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A B S T R A C T

Pharmacogenomic responses to chemotherapy drugs can be modeled by supervised machine learning of ex-
pression and copy number of relevant gene combinations. Such biochemical evidence can form the basis of
derived gene signatures using cell line data, which can subsequently be examined in patients that have been
treated with the same drugs. These gene signatures typically contain elements of multiple biochemical pathways
which together comprise multiple origins of drug resistance or sensitivity. The signatures can capture variation
in these responses to the same drug among different patients.

1. Background

Current pharmacogenetic analysis relates genotypes of various in-
dividual genes to their impact on transport, biotransformation, or dis-
position of drugs in patients. However, in cancer chemotherapy, un-
related gene products significantly contribute to the overall cellular and
clinical responses by impacting elements of other biochemical path-
ways that respond to these agents in tumors [1]. The effects of multiple
genes, termed gene signatures, have been used to predict chemotherapy
response in cell lines using differential gene expression (DGE) as well as
machine learning techniques (ML; [2,3]). These involve measurements
of combinations of expression (GE) and/or DNA copy number (CN)
levels as surrogates for cancer cell growth ([4–8]; Fig. 1).

Machines learn to classify by means of loss functions. This method
evaluates how well a specific algorithm models the given data. If pre-
dictions deviate too much from the actual results in the training data,
the loss function generates a large number. Hinge loss is one type of loss
function that maximizes the impact or weight of training data distant
from the threshold that distinguishes the drug sensitive from resistant
classes of patients or cell lines using support vector machines (SVMs).
When the same type of loss is compared among many ML models (each
consisting of a different combination and weights of genes), a lower loss
indicates a better predictive model.

DGE gene signatures for drug response have been based on on the
average differences in gene co-expression between sensitive and re-
sistant tumor tissues among a set of patients [9]. These signatures have

traditionally selected genes based on the largest overall changes in
expression levels among 2 (or more) groups of patients (for example,
complete pathological remission vs recurrent disease). For a selected
gene, the variance among members of the same group can be large,
resulting in overlap in the expression levels between the groups. While
DGE maximizes differences between the mean expression levels of the
groups, there is often considerable overlap in overall expression over
the quartiles adjacent the mean, resulting in only a subset of individuals
exhibiting significant differences between classes. By contrast, highly
weighted genes in the best performing ML models can exhibit a lower
degree of overlapping expression between sensitive and resistant cate-
gories, due to lower coefficients of variation among these classes. An-
other distinction between DGE and ML approaches is that in DGE, while
individual expression values share information with chemotherapy re-
sponse, many of these genes may reveal similar information, and are
often redundant in the signatures themselves. The process of selecting
genes, ie. features, for ML-based models attempts to minimize re-
dundant features. This reduces a source of noise in the data and miti-
gates against overfitting of the resultant signature to a particular da-
taset of cell lines or tumors.

Direct comparisons of DGE and the ML models can be challenging
because the impact of different gene combinations is not additive in
non-linear models. Correlation of statistical test results with weights of
ML model features may impacted by the order of gene removal when
determining misclassification accuracy corresponding to the weights of
individual genes. Equally weighted genes in the DGE signatures can
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cause genes with significantly overlapping expression levels to dilute
the contributions of those with discrete distributions, affecting the
overall performance of these signatures in discriminating between the
classes of drug response.

The effectiveness of adjuvant chemotherapy agents has been related
to changes in the profile of tumor gene expression [10–15]. Genomic
signatures for chemotherapy (CT) response using supervised ML for
breast cancer (BRCA) have been developed by discriminating sensitive
from resistant cancer cell lines at the median concentration of drug that
inhibits growth of these lines by half (GI50; [3,16–19]). GI50 is an ex-
cellent measure of drug effectiveness and proxy for clinical outcomes,
since it is a holistic approach that incorporates effects on direct targets
as well as comprehensive cellular response, including other biochemical
pathways [16]. This output is what is effectively being modeled based
on GE and/or CN using biochemically-inspired ML approaches.

Genes with biological relevance to drug response were identified

based on evidence in published literature and public cancer drug da-
tabases. GE and/or CN values were then filtered using available BRCA
and bladder cancer (BLC) cell line microarray or next generation se-
quencing data by Multiple Factor Analysis (MFA), a statistical method,
similar to principal component analysis, that quantifies relationships
between GI50 and other variables. The genes eligible to be selected as
ML features have GE and/or CN values that either correlate directly or
inversely with GI50. One optimal set of gene features classifies cancer
cell lines as either resistant or sensitive to drugs using their respective
GE and/or CN values [4]. In general, the median GI50 theshold of cell
lines has the highest positive predictive value for distinguishing be-
tween these classes [5]. ML models select the GE and CN features and
weights with the lowest possible classification error of drug resistance
and sensitivity [20,21] by feature selection. ML approaches for pre-
dicting drug response have included: (a) Support Vector Machines
(SVM; [22]), which selects genes that best discriminate classes along a

Fig. 1. Biochemically-inspired gene signature workflow. Genes biologically relevant to drug response were collected through examination of the published literature
and public databases. Association of GE and/or CN with GI50 was tested in drug-treated 49 breast [8] and 18 bladder carcinoma [7] cell lines. Multiple Factor
Analysis shows either positive or inversely correlated relationships between the GI50 and GE or CN as coincident or opposing vectors. These genes were then used to
build models for the drug using the following machine learning techniques: Support Vector Machine Learning, Random Forest Decision Trees, Minimum Redundancy
Maximum Relevance wrapper for feature selection, and Simulated Annealing. Those models were subsequently used on patient data to predict drug response.
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multidimensional hyperplane consisting of gene features, (b) Random
Forest classifier (RF; [23]), a type of decision tree that votes for the
most frequently selected subsets of genes [5,15] that separate the
classes, and (c) a Minimum Redundancy Maximum Relevance (mRMR;
[24]) wrapper that incrementally adds features that maximize the
mutual information between gene features and classes, while keeping
the redundancy between gene features at a minimum level [6]. CT
signatures have also been derived by Simulated Annealing (SA; [25]),
which minimizes errors in ML models by iteratively selecting gene
combinations that incrementally improve classification accuracy. The
performance of derived signatures are also compared with other pub-
lished gene signatures as well as models derived from randomly se-
lected genes - to assess significance of the null hypothesis [4].

2. Application of cell line-based gene signatures to CT patients

ML signatures [2] were used for prognosis of BRCA tumor response
to paclitaxel and gemcitabine, which was more accurate than previous
hierarchical clustering of mean differences in expression [26]. Gene
signatures were derived by either by backward, forward and complete
feature selection with SVMs [5], then tested by cross-validation with
cell lines excluded from the original signatures. Cell line-derived sig-
natures were validated for paclitaxel, tamoxifen, methotrexate, 5-
fluorouracil, epirubicin, and doxorubicin with a 2000 BRCA patient
dataset [3,27] with multiple ML approaches. These SVM- and RF-de-
rived signatures were also assessed for their ability to provide prognosis
of response, using thresholds based on the duration of progression free
survival (PFS) of patients. This approach retrospectively identified gene
signatures that may have been useful in guiding selection of specific CT
agents for treatment [3]. These models exhibited higher accuracy than
traditional signatures based upon DGE. ML signatures for particular
chemotherapeutic drugs performed best on patient datasets where the
patients received that specific chemotherapeutic drug. However, cross-
application of ML models for individual drugs in patients with other
types of cancer were found to be less accurate for prognosis [4], as well
as in patients receiving drug combinations [5].

The performance of other ML approaches were evaluated for the
MFA-derived gene set at different PFS or time to tumor progression
(TTP) thresholds. mRMR feature selection of a paclitaxel-based SVM
classifier based on expression of ABCB11, ABCC1, BAD, BBC3 and
BCL2L1 was 79% accurate in 53 CT patients. By contrast, an RF clas-
sifier produced a gene signature (ABCB11, ABCC1, BAD, BCL2, CYP2C8,
CYP3A4, MAP4, MAPT, NR1I2, TUBB1, GBP1, OPRK1) that gave
prognoses of> 3 year survival with 82.4% accuracy in 420 hormone
therapy (HT) patients. A similar RF gene signature showed 79.6% ac-
curacy in 504 patients treated with CT and/or HT. These results suggest
that tumor gene expression signatures refined by ML techniques can be
useful for prognosis of PFS and TTP after drug therapies.

3. Example: gene signature of cisplatin response

Cisplatin covalently cross-links adjacent purines in the genome,
which elicits increased DNA damage [28] and anti-oxidant scavenging
responses at the highest levels of resistance. There are differences in
expression of G1/S DNA Damage Checkpoint, Base Excision Repair, and
Nucleotide Excision Repair genes that distinguish sensitive and resistant
BLC cell lines treated with cisplatin. MFA for cisplatin on BRCA and BLC
cell lines (Fig. 2), shows GI50 to be strongly correlated with GE of
ATP7B, BCL2L1, CDKN2C, GSTP1, MSH2, MAP3K1, MT1A, MT2A, MT4,
NFKB2, SLC22A5, SLC22A7, SLC22A11, SLC22A12, SLC22A15,
SLC31A2, SNAI1, and TLR4, and gene copy number of CFLAR, FOS, and
NFKB1. GE of GSTO1, MAPK13, MT3, PPKAA2, PRKCA, PRKCB,
SLC22A10, SLC22A13 and TP63 and CN of MAPK3 and SLC22A20 were
also correlated, but at lower significance. Results were consistent with
published studies [29–31], however many candidate genes previously
associated with cisplatin response were not correlated based on GI50.

The ML-based gene signature was 95% accurate in classifying 41 cell
lines with the median GI50 as the threshold distinguishing sensitivity
from resistance.

An SVM signature containing DNA repair genes: CHEK2, NEIL1,
PNKP, POLD1, POLD2, POLD3, POLE, POLR2H, PSMA2, PSMC2, and
RFC2 expression was used to predict prognosis to segregate a set of 30
BLC patients with advanced disease (NCBI GEO database: dataset
GSE5287) [5]. Long term survival was clustered according to good
(Cluster 1), intermediate (Cluster 2), and poor (Cluster 2.1). These re-
sults were consistent for an independent set of BLC patients (GEO:
GSE31684; Fig. 3).

Previously, the threshold that distinguished drug resistance and
sensitivity was the median GI50 value, which consistently has among
the highest positive predictive value in different patient datasets [5,6].
However, at different GI50 thresholds, signatures are obtained that can
preferentially distinguish the genes contributing to the highest vs.
lowest levels of drug resistance. GI50-thresholded ML models were de-
rived by minimizing either misclassification or a log-loss function to
evaluate the distribution of selected genes and model accuracy. Log-loss
penalizes false classifications, whose value ranges from zero (or com-
pletely accurate) to 1 (or completely inaccurate). The overall distribu-
tion of genes across various GI50 thresholds exhibited both similarities
and differences with gene signatures derived by minimizing classifica-
tion errors at the median GI50 threshold by backwards feature selection.
However, varying these thresholds produces imbalances between the
numbers of sensitive and resistant cell lines, which can affect the per-
formance of ML models at extreme GI50 thresholds [32,33]. An im-
portant question is whether the genes contributing to drug responses
are consistent among different cell lines, each with their own unique
GI50 values. Different ML gene signatures were obtained by shifting the
GI50 threshold, which changed the labels of the resistant and sensitive
cell lines. After feature selection, the compositions of the corresponding
gene signatures for each threshold were compared. Finally, ensemble
averaging of all of these optimized SVMs, each derived for different
GI50 thresholds, was used to create a single aggregated, threshold-in-
dependent signature with fewer independent features (i.e., a composite
gene signature). Aggregated, threshold-independent models generated
for each of the platin drugs at different GI50 thresholds, ie. by ensemble
machine learning, classified bladder cancer patients with similar ac-
curacy (50–63% disease free; 48–73% recurrent). Although the com-
positions of the component GI50-thresholded signatures emphasize
different genes and pathways, their overall performance for dis-
criminating sensitivity from resistance (between 12 and 24months
post-treatment) were similar across the set of patient data.

Kinase genes (MAPK3 and MAP3K1) and apoptotic family members
(BCL2, BCL2L1) were the most consistently represented in different cis-
platin signatures at multiple GI50 thresholds,; error-prone and base-
excision DNA repair genes were also present, but were less frequent
(Fig. 4). The kinase genes were more concentrated in signatures asso-
ciated with increased sensitivity to the drug, whereas BCL2 and BCL2L1
were more ubiquitous and found at all threshold levels. The error prone
polymerases POLD1 and POLQ were more frequently detected in gene
signatures with lower sensitivity thresholds, while the flap en-
donuclease FEN1 tended to be present in signatures that distinguished
high resistance levels. By contrast, thresholded gene signatures for
carboplatin-related genes commonly contained the apoptotic family
member AKT1, transcription regulation genes ETS2 and TP53, as well as
cell growth factors VEGFB and VEGFC, although the latter were less
common at lower sensitivity thresholds. Common oxaliplatin-related
genes included the transporters SLCO1B1 and GRTP1 (but not
SLC47A1), transcription-related genes NFE2L2, PARP15 and CLCN6,
and metabolism-related genes. These analyses showed certain pathways
that contributed to higher levels of resistance, whereas others are pre-
valent at lower levels of sensitivity.
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4. Rational expansion of gene candidates in signatures

The best ML signatures correctly identify the CT responses of the
majority of cell lines and patients according to GI50 threshold; however,
some individuals remain misclassified. Aside from limitations in the
computational approach, it is also reasonable to consider limitations on
existing knowledge regarding the complement of genes associated with
drug responses, i.e. the published literature is an incomplete source of
information about all of the gene products that affect CT response.

We have described ML approaches that derive multigene signatures
that predict drug response containing gene features that are weighted to
optimally distinguish sensitive from resistant classes of cell lines and
patients. As a consequence, certain input features will be eliminated or
emphasized in performing this classification, but these do not reveal
previously unknown genes that contribute to the response. Extending
signatures to include other features from the same or related pathways
is a foundational strategy that is based on established biochemical
mechanisms and relationships revealed from systems biology. Many of
these relationships have not been elucidated, however the principles of
these interactions are well established. Feedback regulation involves
the use of a reaction product to regulate its own or a another reaction.
Interacting or multi-subunit protein complexes would also be subject to
this type of constraint. These types of regulation tend to affect activity
other elements in the same pathways, however these processes are not

exclusive to any particular pathway or set of interactions. They com-
prise ubiquitous network motifs in all kinds of molecular interaction
networks, such as for example metabolic networks, regulatory modules
or signaling networks [34]. Negative feedback, which counteracts ex-
ternal perturbations, can cause oscillating behavior, but also has a
stabilizing effect. Negative feedback may endow cells with robustness
to internal and external perturbations and play a major role in main-
taining homeostasis [35–37]. Positive feedback is also critical in cel-
lular decision processes, by producing ultrasensitivity and prolonged
responses to a transient external signal [37–39]. While positive and
negative feedback loops are ubiquitous in biochemical signaling path-
ways, an additional effect called quasi-bistability can contribute to
observed responses to different stimuli. Quasi-bistability allows mono-
stable systems to maintain two distinct states upon receipt of a transient
input, which may be related to positive feedback loops [40].

The discovery of other genes whose GE and/or CN contribute to
chemotherapy response can be guided by interactions with the gene
products present in existing signatures. Gene products within the same
or linked biochemical pathways may contribute to drug response
through direct or indirect feedback, and through epistatic relationships
to existing genes in these signatures. Expansion of the set of candidate
signature gene products is therefore based on their established proxi-
mity in biochemical pathways, direct interactions, and regulatory re-
lationships [41] to gene products in the original signatures. Although

Fig. 2. Schematic of cisplatin sensitivity and resistance genes. Genes are indicated according to their role in drug metabolism. Red boxes indicate genes with a
positive correlation between gene expression or copy number to GI50 and IC50 using Multiple Factor Analysis. Blue demonstrates a negative correlation. Genes
circumscribed by bolded rectangles with rounded edges were selected by ML for inclusion in the gene signature. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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software has been developed and applied to automate this process, the
extent to which particular pathways, interactions or forms of regulation
are preferentially incorporated into the expanded signatures has not yet
been established. Another limitation is that the resources used for
pathway expansion of existing signatures do not currently account for

steady-state vs. dynamic differences between interactions based in-
directly on gene expression changes and actual biochemical regulation
of the drug targets and metabolites.

Neighboring genes may be related either through direct interaction
or by substrate-product dependency within that same or adjacent

Fig. 3. Clustering cisplatin-treated patients based on expres-
sion of damage response genes in signature.
Of 146 genes involved in G1/S DNA damage checkpoints
(N=61), base excision repair (N=35), and nucleotide exci-
sion repair (N=50), 11 showed significant differences in gene
expression between 4 sensitive and 6 resistant bladder cell
lines10. These 11 genes were selected for unsupervised clus-
tering of expression in treated patients in NCBI GEO datasets,
GSE5287 and GSE31684. (A) indicates differences in survival
for patients in GSE31684 with poor (2.1), intermediate [1],
and good [2] prognostic outcomes (percent survival) in a
Kaplan-Meier plot based on expression of these genes. (B)
shows the heatmap for these clusters by patient (GSE31684;
n=144; red= high, blue= low expression). In this case, the
differences between the outcome categories were not statisti-
cally significant. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Ensemble of gene signatures for cisplatin at
different GI50 thresholds. Each column represents the
contributions of genes (number of genes by pathway:
4 apoptosis, 2 cell growth, 9 DNA repair, 2 metabo-
lism, 3 metal binding, 3 signal transduction, 7 tran-
scription and 9 transport) at different GI50 levels.
Font size corresponds to frequency of gene in dif-
ferent gene signature models.
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biochemical pathways, with adjacency defined as the number of
pathway nodes separated from the original signature gene. This in-
volves referencing a comprehensive, updated digital source of bio-
chemical reaction and interaction pathways, for example, from
Pathway Commons (http://www.pathwaycommons.org/), which in-
cludes the Reactome, ConsensusPathDB, and KEGG databases. To dis-
cover either previously unknown genes, or replace existing genes and
create higher accuracy signatures, well-established functional re-
lationships between original and novel genes are leveraged. This in-
tegrated resource enables efficient computational searching of hier-
archical and other relationships between interacting gene products and
reaction dependences of initial signature genes. Candidates are selected
based on known relationships (regulatory, associations) with gene
products included in gene signatures, and systematically, based on
network proximity to those in the current signature. By systematically
traversing the pathway graph for each signature gene, candidates are
selected for another round of machine learning based on GE and/or CN
features that exhibit significant direct or inverse correlations to GI50
values (Pearson correlation coefficient: -0.8 < r > 0.8). Neighbors for
each signature gene are present at each level of the biochemical and
interaction network. Inclusion of neighboring genes can be influenced
by more distant node interactions that interact with gene products
encoded in the original signatures. Pathway expansion can produce
large numbers of potential gene candidates that are correlated with GI50
(Table 1). To minimize false discovery of novel signature genes, we
have limited permissible distances between original and derivative
genes to a depth of up to 3 nodes.

Analysis of extended cisplatin signatures based on manual testing
and inclusion of genes from a single adjacent pathway node demon-
strated that two new gene neighbors improved accuracy of prognosis of
remission, and one gene improved prognosis of recurrent disease.
Candidate immediate neighboring genes to expand cisplatin signatures
(Table 1) revealed genes in neighboring biochemical pathways that,
when introduced, marginally improved accuracy (2–4%, depending on
the gene) of Cis1, the best performing published signature [7].

Expanded signatures for many drugs are still in the process being
analyzed, however results for tyrosine and serine kinase inhibitors
(sunitinib, sorafenib, lapatinib, erlotinib, imatinib and gefitinib) are
currently the most mature. Initial ML-based classifiers were originally
based on backwards feature selection of response genes from published
literature on these drugs. Except for Sunitinib, the performance of all of
these ML models appears to have been improved by extension of the
biochemical network to include pathway neighbors. In the best per-
forming datasets, overall classification accuracies for prognosis of pa-
tient response were 73% for erlotinib, 75% for lapatinib, 85% for sor-
afenib, 83% for sunitinib, 66% for imatinib, and 53% for gefitinib
(however the latter dataset consisted of only 11 patients, of which
sensitivity was correctly predicted in 4 of 4 patients and resistance in 2
of 7). Interestingly, the genes in the extended signatures replace most,
but not all, of the literature-based classifiers. The improved signatures

contain genes that are 1 or 2 nodes from the original gene from which it
was associated. Generally, they are each composed of unique sets of
genes (there is little overlap between the compositions of signatures for
different kinase inhibitors).

Many additional genes are likely to be found with strong correla-
tions to GI50 levels or other response measures. Inclusion of these ad-
ditional features (in either the same signature or in the number of high
performing signatures) could increase susceptibility of ML models to
overfitting of the training data, which would falsely inflate their ac-
curacy. Several strategies can be implemented to reduce the number of
additional gene features, thereby minimizing the likelihood of model
overfitting, including: (a) limiting genes to pathways that are re-
presented predominantly in the original signatures with highest per-
formance at extreme responses (most or least chemo-resistant), (b) fil-
tering epistatic genes that merge gene features present in the same
pathway based on evidence that they both exert the overlapping reg-
ulatory effects on a single pathway product or at the same node in a
pathway, and (c) ensemble averaging of multiple gene signatures with
equivalent performance can define consensus ML models with fewer
features. The number of distant extant nodes in pathway networks can
also be pruned to mitigate overfitting of genomic data. Features can
also be prioritized by limiting the new genes to pathways that make the
most significant contributions to CT resistance. These strategies could
improve reproducibility and prognostic accuracy compared to the ori-
ginal gene signatures using new data sources.

The revised, expanded signatures can then be derived by ML
training on cancer cell line GE and/or CN data at specified GI50
thresholds. Pathway node partners of genes in the existing gene sig-
natures are retained if they either reduce misclassification rates or
improve classification of the cell lines. The resultant signatures, in-
cluding network partner genes, are compared with the previously-de-
rived signatures and evaluated with patient genomic data to assess
whether prognostic accuracy have also been improved for different
clinical response duration thresholds. Results are limited solely to genes
that significantly contribute by MFA analysis to chemotherapy re-
sponse. The relative contribution of each gene to the chemotherapy
response is determined by computing misclassification or log loss after
removal of this gene from the signature. Robust gene signatures can be
determined for different GI50 thresholds with hinge loss functions that
weight GE/CN values of cell lines with outlier GI50 values more highly
relative to those with GI50 values close to the mean threshold.

Gene expression signature expansion does not have to be restricted
to polyadenylated mRNAs that encode proteins. The complex taxonomy
of the RNA universe includes many other non-coding (nc) species, such
as miRNA, RNA Polymerase III-derived transcripts (tRNA, small nuclear
RNA, sno- and piwi-RNA, and Alu, small nuclear RNAs), enhancer
RNAs, long non-coding (lnc) RNAs, circular (circ) RNAs, and RNA
polymerase I transcripts, for example rRNAs, which comprise the most
predominant nucleic acids in cells. It is feasible to computationally
derive expression signatures that are prognostic for drug response
without necessarily understanding their functional or phenotypic basis.
For example, non-coding (nc) RNAs have recently been used to derive
accurate gene signatures for predicting BLCA and lung adenocarcinoma
patient responses to platinum therapies based on expression data from
The Cancer Genome Atlas [42].

Nevertheless, inclusion of lncRNA and circRNA evidence in gene
signatures will likely require that these species be related extrinsic
properties of drug response over a range of measured phenotypes.
Transcripts with recurrent mutation hotspots in essential coding do-
mains that would result in localized exon skipping, cryptic splice site
activation and/or intron inclusion detected by analysis of RNASeq
would be reasonable candidates to consider for such signatures.

It is notable that different ncRNA species are identified, sequenced
and measured by different protocols. ncRNAs are still not well covered
in microarray platforms, but are evident by analysis of RNASeq li-
braries. This introduces challenges into deriving metaRNA signatures

Table 1
Correlated genes eligible for cisplatin extended gene signature.

Minimum correlation with GI50 Number of correlated genes by nodea:

0 1 2 3

≥ 0% 14 2451 10,780 340
≥ 70% 14 377 2035 82
≥ 80% 10 241 1291 50
≥ 90% 5 120 621 23
≥ 95% 4 61 292 11

a Nodes correspond to the number of biochemical pathway steps separating a
gene from the initial gene signature [Node 0; same pathway], which includes:
ATP7B, BARD1, BCL2, CDKN2C, ERCC2, FOS, MAP3K1, MAPK13, NFKB1,
PNKP, POLQ, PRKCA, SLC22A5 and SNAI1.
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comprising multiple species, since globally-normalized expression le-
vels are necessary for the signatures to be reproducible among different
datasets. Nevertheless, conventional RNASeq libraries contain cDNA
sequences from polyadenylated circRNA and lncRNAs, and are likely be
generated concurrently with mRNAs. circRNAs are byproducts of
mRNA splicing resulting from excision of non-contiguous donor and
acceptor joins, usually by alternative splicing. Although highly ex-
pressed, a unified explanation for the functions of most circRNAs has
not been found. The sequence content of short-read RNASeq cDNA li-
braries from mutated transcripts of circRNA and lncRNA could be in-
distinguishable from those generated by genomically-encoded muta-
tions. We have found that mutations at splice sites can affect exon
definition, resulting in intron inclusion, or exon skipping, cryptic iso-
forms or combinations of these [43]. It seems likely that some intronic
reads originate from circRNAs, which themselves may be derived from
different genomic variants. Common features in ML-based gene sig-
natures could be consolidated from multiple distinct, rare point muta-
tions that produce the same altered circRNA isoforms.

While gene signatures can be derived by inclusion of lncRNA and
circRNA evidence, their utility remains to be established. Functional
relationships to tumor or cell line response to a drug are needed. Strong
candidates would include genes with recurrent mutation hotspots
generating circRNAs in essential coding domains that would result in
localized exon skipping, cryptic splice site activation and/or intron
inclusion detected by analysis of RNASeq.

5. Prognostic utility of cell line-derived signatures for patient CT
responses

Gene signatures based on tumor GE and/or CN data have been used
to determine if ML-based gene signatures for sensitivity are related to
patient response. In the absence of GI50, EC50, IC50 or other ground
truth measures of drug response, primary study endpoints of patient
clinical trials are used as surrogate measures for chemotherapy re-
sponse thresholds. These may vary among available datasets and can
include PFS, TTP, time to treatment failure (TTF) or proportionate
complete response (CR) [44,45]. Gene signatures of invasive breast
cancer performed well at the 4 year PFS threshold in 68.7% patients
and 3 year CR in 74% patients [5]. There are limitations on interpreting
drug signatures based on sample size, heterogeneous pathology, biases
in patient ascertainment or study design. Studies with small numbers of
enrolled patients should be reported as categorical results. Analyses of
CT response have shown that the duration of clinical follow-up meta-
data has been adequate for larger studies (eg. METABRIC and the
Cancer Genome Atlas). While the precise timing of administration of
chemotherapy post-diagnosis may confound results, it is difficult to
assess the impact of this, though this may explain some signatures with
limited prognostic value (< 60% accuracy).

Approaches that are free of cell line endpoints (such as GI50) can be
used to set thresholds using patient-derived outcomes [4]. For example,
TTP can be used to distinguish resistant from sensitivie drug pheno-
types. Patients will be categorized as either sensitive or resistant, based
on tumor status at specific time thresholds until either death or relapse.
Varying these time thresholds will identify the gene signature model(s)
that optimally discriminate these categories, with disease-free patients
exceeding the threshold classified as sensitive. Patients treated with
either surgery alone or radiation can serve as negative controls [4], as
their outcomes are not expected to be related to a particular CT sig-
nature. If prognosis predicted by the signature produces similar pro-
portions of sensitive vs. resistant patients in the CT vs control groups,
the signature could not be related to the tumor GE and/or CN profile.
The signature accuracy may also reflect selection for proliferation of
tumor sub-clones, consistent with resistance arising in a subset of cells
with accumulated genetic changes that confer resistance [44].

Datasets contain different numbers of patients with both available
meta- and genomic data for a single drug treatment or a combination

therapy. For multiple, independent patient datasets treated with the
same CT, a signature is considered validated in different sets of patients
if the accuracies are comparable. The minimum number of patients
required to validate a gene signature depends on the balance between
the census of sensitive vs. resistant individuals. Smaller patient datasets
should only be analyzed categorically, without reporting statistical
significance analysis, since these may reveal only trends in the data.
With 77 or more patients, sensitivity and resistance can be dis-
tinguished at p < .01 significance with 80% power, assuming each
category to be equally prevalent. However, resistance to CT was 1.8
fold more common in the METABRIC breast cancer cohort [3]. With this
level of imbalance, 84 patients are required (54 and 30 patients, re-
spectively). Our paclitaxel gene signature [4,26] was also based on an
imbalanced outcome data, with approximately 4.2 patients developing
recurrent disease for each CR. To achieve significance, 124 patients for
the signature were required (100 recurrent and 24 CR).

The analysis of expressed genetic polymorphisms in RNA sequen-
cing data from tumors could also potentially identify clonal events that
define subpopulations of cells with different drug response phenotypes
[45]. If these subpopulations were identified prior to or early in treat-
ment, it might assist in timely selection of appropriate therapies. Such
bioinformatic analysis of deep sequencing or single-cell next generation
sequencing data is likely to provide valuable insight into whether the
output of prognostic signatures reflects homogeneous or heterogeneous
cell populations. These results could be important in understanding
whether therapies operate on only a subset or all cells. Where kar-
yotypes are often mosaic and polyclonal, it is conceivable that corre-
lation of genotypes with signature predictions in different cells from the
same tumor might reveal the cellular origins of drug resistant pheno-
types.

6. Summary

Gene signatures that assist decisions to treat cancer with che-
motherapy have been clinically approved by regulators after analysis of
large patient cohorts [46–50]. These tests have been endorsed as
mainstream medical practice and for government reimbursement [51].
The objective of incorporating such studies into chemotherapy man-
agement has a number of advantages for patients, including the elim-
ination of redundant genetic information, their transferability and
prognostic value, and the benefits of integrating cellular responses that
incorporate different mechanisms of resistance into a single prognostic
signature. Genomic signatures could be used by oncologists to avoid the
use of drugs with unfavorable signatures or by substituting other drugs
expected to be effective in a patient, either individually or in combi-
nation. We envision panels of CT signatures for multiple drugs that can
be evaluated from the complete transcriptome data of a tumor. Re-
sponse profiles may be capable of providing a set of prognostic drug
responses for each patient. Such a strategy could assist in decisions to
treat individuals with approved secondary CT rather than standard
first-line adjuvant therapies.
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